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Abstract-A mathematical model is proposed for gelation that takes place as the coagulant 

diffuses into polymer solution filaments. Gelation kinetics is modeled numerically. The 

manner in which the size of the complete gelation zone varies with time is determined and 

analyzed. A comparison is made between experiment and calculation. Drawing upon the 

model, the dependence of gelation time on basic process variables is estimated. 

INTRODUCTION 

Basically, the wet spinning of synthetic fiber includes pumping the starting polymer solution 

through spinnerets, and then passing the filaments thus produced through a coagulating bath. As the 

polymer solution passes through the bath, the coagulant finds its way into the polymer filaments and 

accumulates there. When enough of the coagulant has accumulated, the polymer solution is separated into 

a solid (gel-like) and a liquid phase. The gel-like phase is the primary structure of the fiber and governs its 

properties in many respects. Optimization and control of the spinning process, especially when various 

types of fiber need to be spun, are complicated operations which require a great effort and highly 

skilled personnel to perform. To enhance the reliability and speed of their action, it is essential to have an 

adequate model of gelation, that is, of the first stage in fiber spinning [1]. Many investigators have attempted 

to develop such models [1-7]. Unfortunately, all of their models fail to take into account some important 

aspects of the structuring process, such as the phase equilibrium of the polymer-solvent-coagulant 

system, the temperature behavior of the kinetics, the kinetics of phase separation, relaxation processes, 

etc. 

Existing models of wet spinning [1-7] fail to estimate the kinetics of structuring, that is, to establish 

the pattern of changes in the thickness of the solidified polymer with time. Rg(t) of the gelation zone 

changes with changes in process variables. A model that considers the kinetics of gelation is proposed in 



[8], but it is based on far too many assumptions. The aim of this paper is to develop a model for the initial 

stage of fiber spinning (filament formation) from a polymer solution by the wet spinning process, using 

existing models and taking into account the phase equilibrium of the polymer-solvent-coagulant system, 

heat transfer, the evolution of diffusion processes with temperature, the existence of a layered two-phase 

structure when filaments are formed from a polymer solution, the thermal effects 

associated with the reactions of the components involved in the process, and changes in fiber size in the 

process. 

THE MODEL 

In developing the model, we make the following assumptions about filament formation. (1) The 

problem is treated under axial symmetry in a one-dimensional statement, assuming that the coagulant 

diffuses solely along the radius in the absence of convection and that the fiber is an unbounded 

cylinder whose radius is small in comparison with the length of the coagulating bath. (2) Only the 

diffusion of the coagulant and solvent is considered, assuming that the polymer does not diffuse into the 

coagulant. (3) The diffusivity of the coagulant into the polymer solution, D1, differs from its diffusivity 

into the solidified gel-like layer, D0, being in the ratio D0 = D1/3 [1], and both are functions of 

temperature, T (r. t). (4) Mass transfer occurs under boundary conditions of the first type, assuming that, 

during the complete gelation time, the coagulant concentration in the bath at the fiber changes not more 

than 3% [2] at a solution filament velocity of about 0.1 m/s. (5) During gelation, the gel layer shrinks 

uniformly across its entire thickness. (6) The thermophysical coefficients of the polymer solution and of 

the solidified layer are functions of the temperature T(r, t) and are independent of the coagulant 

concentration C(r, t); heat transfer at the fiber surface obeys Newton's law, that is, third-kind boundary 

conditions. (7) We neglect the change in the filament radius caused by mass transfer between the filament 

and the coagulating bath, and by the extension of the filament. (8) We consider the formation of only one 

filament in the coagulating bath and neglect any interaction between filaments. 

Keeping in mind the rationale of the wet spinning process and the data from [1-8], we will consider the 

diffusion of the coagulant into the fiber and of the coagulant from the fiber into the coagulating bath. The 

applicable equation of diffusion in cylindrical coordinates takes the form 

])([1
r

C
rTD

rrt
С i

i
i

∂
∂

∂
∂

=
∂
∂                                                               (1) 

This is a system of four mass transfer equations that describe the diffusion of the coagulant into the 

polymer solution for i = 0 and into the gel for i = 1, and the respective diffusion of the solvent for i = 2 

and 3. Heat transfer in the fiber is described by the equations 
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This is a system of two equations for j = 0 in the case of the polymer solution and for j = 1 in the case of 

the gel. The initial conditions at t = 0 are 

 

Tj(r, 0) = Tnj(r).    Ci(r. 0) = Cni(r).                                                 (3) 

 

The boundary conditions are as follows. At the outer boundary of the fiber, that is, r = R 
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Ci(R0,0) = Csi(t),  i= 0,2, 

 

at the polymer solution-gel interface, that is, r = R 
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                                     Ci(R,0) = C i + 1 ( t ) .     i = 0,2,   
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T1(R,t)= T0(R,t) 

 

At the center of the fiber, that is. r = 0, the symmetry conditions take the form 
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The heat source in equation (2) accounts for the heat released upon mixing the coagulant and the solvent 

[12], and its power is                   
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Gelation causes a change in the volume [3] and geometrical dimensions of polymer solution 

filaments. The change comes about because the gel takes up a smaller volume than does the 

polymer solution. The fiber thickness is a variable, Ro = R0(t), and can be found from the equation 

 

 

R0
2 (t)= R2(t)+γ [R0

2 (0)-R2 (t)].                                                      (9) 

 

The presence of a movable boundary poses additional difficulties in solving the problem. One way 

to change from a no stationary to a stationary boundary is  to use the von Mises transformation [9], which 

introduces a new dimensionless variable, η, defined as η = r/R0(t). The change from the original 

independent variables r and t to the new ones ŋ and t is done, using the expressions 
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Upon the change of variables and after some algebraic manipulations, equations (1) through (8) take the 

form  
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Tj(η,0)= Tnj(η),     Ci(η,0)= Cni(η)                                      (3a) 

For η =1 
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Ci(1,0)= Csi(t)         i=0,2 

 

For η = R/R0
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Ci(η)= Ci+1(η),         i=0,2 
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T1(η,t)= T0(η,t) 

For η =0  
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In what follows, we will use the original independent variables r and t to make the presentation 

more instructive, and the new variables η and t will be used in solving equations (1a)  through (8a). 

 In calculating changes in the gelation front with time, R(t), it is necessary to consider the phase 

separation diagram of the three-component polymer-solvent-coagulant system. It establishes the 

conditions for phase separation (gelation). 

The gel thickness is found from the transcendental equation 



 

C0[R,t] = Ccr[T(r,t)],                                                                 (11) 

 

where Ccr is found from the phase diagram. This equation is solved for the gelation front coordinate R = 

R(t). Then the present gel thickness Rg(t) can be defined as Rg(t) = R0(t) – R(t). Using this relation and 

equation (11), we are in a position to find the gel thickness as a time function, Rg(t). 

We solve the nonlinear system of equations (1) through (11) ,  using an implicit finite-difference 

scheme [9, 10]. The von Mises transformation does not complicate the task. The algebraic system of 

equations is linearized by an iterative method [10], which takes no more than three iterations steps. 

Iterations are used because the behavior of Ro(t) is not known in advance and has to be determined in the 

course of the solution. To see if it is correct, the numerical solution is checked against known solutions to 

linear problems from [11], and in the case of nonlinear problems, against a check example from [10]. 

With the chosen parameters of the numerical scheme, the error is not greater than 1.5%. 

For numerical simulation, we choose the soft type of wet spinning, using the polyacrylonitrile (PAN)-

dime-thyl formamide (DMF)-water system. The initial concentrations in the solution are 20% PAN and 

80% DMF, and in the coagulating bath, 80% DMF and 20% water. The process variables are R0(0) = 0.05 

mm at t = 0, Tn = 50°C, and Ts = -10°C. 

The heat and mass transfer coefficients are chosen as follows. According to [3], the diffusivity of the 

coagulant into the solution varies with temperature, so we choose it to be D1 = (2.2 + 0.0475T) x 1O-10 m2/s, 

and that of the solvent into the solution, D3 = 1,4D1 .The diffusivity into the solidified polymer is 

assumed to be Di = Di+1/3, i = 0.2 after [1]. The coefficients necessary to solve the thermal problem 

involving the PAN-DMF solution are borrowed from [12], neglecting their temperature dependence: 

λ=0.2 W/(m K), G= 2100 J/(kg K) and ρ = 950 kg/m3. For lack of data on the thermal properties of the gel, 

we assume them to be the same as for the polymer solution. The value of α = 1000 W/(m2 K) is 

determined after [1].  

The contribution due to the heat of mixing, equation (8), to the heat defined in equation (2) is 

estimated to be such that can cause a change in temperature no more than 0.5% of the filament 

temperature range for the system in question and under the spinning conditions chosen, given the same 

order of magnitude for the time derivatives of temperature, concentration, and specific heat of mixing, qm, 

of water and DMF [13]. 

The kinetics of gelation is calculated using the phase diagram for the PAN-DMF-water system from 

[14]. 

A graph relating the thickness of the solidified polymer (gel) to time, Rg(t), is shown in Fig. 1. This is an 

5-shaped curve implying that at the start of the process the thickness Rg is proportional to the square 
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Fig. 1. Gel thickness as a function of time, Rg(t). (1) For R0(t); (2) for Ro = const; (3) filament thickness as a 

function of time, R0(t). 

                                                               

Fig. 2. Fiber temperature averaged over radius as a function of time. 

 

 time, (t)1/2, then it turns almost linear, and. as time passes, it becomes proportional to a higher 

power of time. In the subsequent calculations, we assume that R0 = R0(0) = const. This assumption 

does not cause a qualitative change in the behavior of the relations given below, but makes them more 

illustrative. 

We calculate how the temperature of the fiber varies with time. The results are given in Fig. 2. Note that 

the fiber cools to ambient temperature in 0.4 s. which is about one-quarter of the gelation time. 

Figure 3 illustrates the manner in which the coagulant concentration in the fiber varies with 

coordinate, and Fig. 4, with time. The kinks in the curves reflect the fact that at time t the gelation 

front is positioned at a point whose coordinate is r(t). The kinks are traceable to discontinuities in the 



concentration gradients and to the conservation of coagulant mass fluxes boundary 

 

Fig. 3. Distribution of coagulant concentration along radius at different instants .r: ( 1 )  0.3; (2) 0.6; (3) 0.9; (4) 

1.2;(5) 1.5 s. 

                                           

Fig. 4. Coagulant concentration in fiber plotted against time at points with coordinates r. ( 1 )  0; (2) 0.00001; (3) 

0.00002; (4)0.00003 m. 

 

 

 

Fig. 5. Gel thickness plotted against time. Rg(t).(1) Through (3 )  calculation; (4) through (6) experiment [2]; ( 1 )  

and ( 4 )  for R0 = 0.07 mm: (2) and (5) R{) - 0.105 mm; (3) and (6)  R0 = 0 15 mm 



conditions of the fourth kind, equation (5)]. To illustrate the fact, a point is highlighted in Figs. 1, 3, and 

4, which tells us that at time t = 0.3 s the solidification front is positioned at a coordinate R = 0.03 mm, 

which corresponds to a gel thickness Rg = 0.02 mm. 

To see if the proposed mathematical model is workable and gives a close fit to the actual situation, we 

compare the calculated results with the experimental data from Mezhirov [15] for PAN fibers wet-spun 

from an aqueous rhodanide polymer solution. Mezhirov [15] reports his observations of changes in the 

gelation radius with time, Rg(t), for different spinneret radii. In his experiments the filament radius 

was R0 = 0.15, 0.105, and 0.07 mm. the initial temperature was equal to that of the coagulant in the bath 

(isothermal conditions), Tn = Ts = 11°C, the coagulant (water) concentration in the bath was C0 = 90%, and 

the initial polymer solution concentration was Cn = 42.68%. All the water, free and bound, was taken to be 

the coagulant. 

In numerical simulation based on the proposed model, we use the phase diagram for the aqueous 

rhodanide solution [14], For calculations, we need to know the diffusivity of the coagulant into the 

polymer solution, D1, and the diffusivity of the coagulant into the polymer gel, D0. We borrow them 

from experimental data reported in [15]. For a filament radius R0 = 0.105 mm, the numerically fitted 

diffusivity is D = 2.2 x 10-10 m2/s for a ratio D0 = D1/3. This value assures a close fit between the 

experimental and calculated complete gelation time, tg - 6.8 s. Using this value of diffusivity, we then 

calculate the manner in which the radius of the solidified polymer varies with time, Rg(t), for filaments 

differing in R0. The calculated results are presented in Fig. 5. A good fit with the experiment can be seen 

for two curves and a satisfactory fit for a filament of radius R0 = 0.15 mm. Note also agreement in the 

complete gelation time, in the qualitative behavior of the 5-shaped curves, and in the time variations of 

Rg. The discrepancy between the calculated and the experimental data may have arisen because the 

mathematical model is developed under several assumptions, and because there may be some 

inaccuracies in the phase diagram used in the calculations [14]. 

The most crucial point in the wet spinning of synthetic fibers is the buildup of the polymer shell (gel) 

over time. Therefore, our next task is to analyze the pattern of changes in the gelation zone size with time, 

Rg(t), and to explain why this function is S-shaped. To this end, we consider an approximate linear 

model for gelation, expressed in the form of algebraic equations. In doing so, we assume that a 

simplified nonlinear model will preserve the qualitative form of the function Rg(t). This assumption 

is based on the following fact. The nonlinearity, which makes it possible to calculate the kinetics of 

gelation, causes the diffusivity to change with time and space only quantitatively. Therefore, we are in a 

position to take into account the changes that occur in the diffusivity of the solution and the gel as the gel 

region undergoes dynamic changes. 

The gel thickness is found from the transcendental equation (11). The proposed gelation model will 



transform into the linear equation of diffusion for an unbounded cylinder on the proviso that (1) the 

spinning operation goes on under isothermal conditions; that is, the initial temperature of the polymer 

solution is the same as that of the coagulating bath, so that the filament temperature remains constant, 

T(r, t) = const; (2) the coagulant has the same diffusivity into the polymer solution and into the gel; (3) 

the coagulant has a constant diffusivity. If these conditions are satisfied, equation (11) is simplified to the 

form 

Ci[R, t] = Ccr = const.                                                                      (12) 

A similar approach to the linear equation of diffusion is proposed in [6]. 

For comparison, consider solving equations (11)  and (12) for the '"soft" spinning operation in the 

case of the PAN-DMF-water system. To facilitate the comparison, we assume that the spinning 

variables have the same values as they had in the previous case, with minor changes necessitated by the 

fact that the operation goes on isothermally (the initial temperature of the solution is the same as that of the 

bath, Tn = Ts = -10°C). In the circumstances, the concentration corresponding to polymer gelation in the 

phase diagram at the specified temperature is Ccr = 2% after [14]. We take it that the diffusivity of the 

coagulant into the fiber, averaged over temperature and time, is D = 2.08 x 10-10 m2/s. 

In the case of a linear model, the total gelation time can be found, using the tabulated solution of the 

linear problem at the center of a cylinder, r = 0, given in [11]. To demonstrate, the gelation may be taken 

to have reached completion when at the point most distant from the filament surface, which is the fiber 

center, the coagulant concentration is sufficient to bring about the phase transition of the polymer 

solution to a gel, or when Ci(0, t) = Ccr. For this value of Ccr. the total gelation time is tg = 1.03 s. This 

estimate is as much as one-third smaller than the calculated time tg = 1.5 s (see Fig. 4). The reason is 

that a linear model is unable to take into account the changes that occur in the diffusivity upon gelation. 

The solution to equation (12) on the time interval [0, tg] is represented by curve 1 in Fig. 5. In the 

same figure, curve 2 gives the solution obtained, using the gelation model. Comparison of the solidified 

polymer thickness as a function of time found from the model, equations (1)  through (11), with the 

solution of a similar linear equation of diffusion (1) shows that both behave similarly in qualitative 

terms. Therefore, in the subsequent discussion we take it that the results obtained from an analysis of 

the function Rg(t) for the linear problem qualitatively explain the kinetics of gelation in the case of the 

nonlinear model as well. 

Resort to a linear model does not significantly simplify equation (12)-it remains transcendental. 

Therefore, in order to transform equation (12) to an algebraic equation and to further analyze the behavior 

of gel thickness with time, we use a well-known method for analysis of solutions to the parabolic equation 

of transport from [16]. It is based on an approximate solution of a given transport process at short and 

long times. In this method, the gelation time tg is divided into two parts. The point of division is the value 



of the Fourier number Fon = Dtn /R2
o = 0.081, corresponding to the instant when changes begin in the 

concentration at the cylinder's center r = 0, that is, the point farthest from the filament's surface, or the 

coagulant source. To demonstrate, for D the value of Fon, corresponds to tn = 0.97 s. This is the instant 

where the concentration at the fiber's center is 1 %, which checks with the assumptions made. In [16], it is 

proposed that in the first half-interval, where t < tn, the concentration should be calculated, using an 

approximate expression, which is an exact one for a semi-infinite medium [11,16]. In the second half-

interval, where t > tn, this should be done, using a different approximate solution, which is the first term of 

an infinite series (solutions to the linear equation of diffusion for an infinite cylinder [11,16]). We can then 

obtain expressions for the polymer gelation thickness in explicit form as a function of time for a certain 

critical concentration Ccr as 

Rg(t) =(Dt/[erf - 1{  θ }] )1 / 2 ,           for    0 < t < t n ,                                  (13) 

where erf-1 is the inverse of the error function erf, θ = (Ccr – Cs)/(Cn - Cs), and 

R g { t ) = R 0 { 1 - [ 1 -  { θ }exp(5.79(Fo-Fo1))]1/1.51}                                          (14) 

for tg > t > tn.. 

The results calculated by equations (13) and (14) are given in Fig. 6. They agree closely with 

the solution of the nonlinear problem for t < tn and satisfactorily for t > tn. It is noteworthy that 

both calculated curves are in full qualitative agreement with the function Rg(t) derived earlier and 

explain its S-shape in qualitative terms. Equations (13) and (14) imply that. 

tg = R o
2 [ F o 1 - l n (θ) / 5 . 7 9 ] / D  = tn+tcr                                                                    (15) 

where θ ranges between 1 and 0. Therefore, it is obvious that ln(θ) <=0. Equation (15) may be written as a 

sum in which the first term tn is the time required for the coagulant concentration at the center of a 

filament, r = 0, to change by about 1% relative to the initial value. In other words, the coagulant 

stream has reached the filament's center, or the point farthest from the fiber's surface. The time tcr is the 

time during which the coagulant concentration changes from its original value to the value required for 

gelation, Ccr, at a given temperature. With such an approach, the gelation process may 



 
Fig. 6. Gel thickness plotted against time. Rg(t):  (l) after (11); (2) by equation (12): (3) by equation (13); (4) by equation (14). 

 

Fig. 7. Complete gelation time tg plotted against fiber-spinning variables: (1)  coagulant concentration in bath Cs: (2) 

coagulant concentration in polymer solution Cn, (3) bath temperature Ts; (4) polymer solution filament radius Ro. 

be thought of as proceeding in two stages whose duration is tn and tcr, respectively. 

It is of practical interest to analyze the way the gelation characteristics behave with changes in 

the wet spinning process variables. The basic variable that characterizes the solidificat ion of 

the polymer is the complete gelation time tg Given a constant fiber velocity v, the time tg 

determines the bath length 

L=vtg.                                                  (16) 

 

Figure 7 gives graphs of the complete gelation time tg plotted against the wet-spinning process 



variables, such as the coagulant concentration in the bath Cs, the coagulant concentration in the 

polymer solution Cn, the temperature of the solution in the bath Ts, and the radius of a polymer 

solution filament R0. The range of the variables is chosen to be close to what actually occurs in 

practice. The results are derived, using our mathematical model for the "soft" wet spinning 

process in the PAN-DMF-water system. During a simulation run, one of the variables is 

changed and the remaining ones are held constant. Interestingly, the curve of the total gelation 

time plotted against fiber radius is a quadratic parabola. This fact confirms the possibility of 

using relations of the type (15). 

 

CONCLUSION 

In this paper, we have come up with a model for gelation in the wet spinning of synthetic 

fibers from polymers. In contrast to its previous counterparts [1-7], it makes possible the 

computation of gelation kinetics on the basis of a phase diagram, the joint heat and mass transfer 

from the movable interface, and mass transfer coefficients as functions of temperature. The 

model and the associated computer software can also come in useful in calculating wet spinning 

variables for other polymer solutions. 
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a(T)-thermal diffusivity; 

C(r, t)-concentration; 

Ccr-coagulant concentration at the instant of the phase transition at temperature T; 

Cp(r, t)-approximate solution of the linear problem of diffusion; 

D-diffusivity; 

erf - error function; 

erf-1 - inverse (of the) error function; 

G - specific heat; 

qm - heat of mixing per unit mass of coagulant; 

qv - heat of mixing per unit volume of coagulant; 

Ro = R0(t) fiber radius coordinate varying with time 



from R0(0) to R0(tg); 

R = R(t) - gelation front coordinate varying with time from R0 to r= 0; 

T(r, t) - temperature at time t at point with coordinate r; 

Tn - initial temperature of polymer solution; 

Tλ - coagulating bath temperature; 

tg - complete gelation time; 

v - fiber velocity in coagulating bath; 

α - heat transfer coefficient; 

γ - volumetric contraction coefficient of polymer upon gelation; 

λ - thermal conductivity; 

p - density; 

θ=(Ccr-Cs)/(Cn-Cs); 

η=r/R0; 

Bi - Biot number; 

Fo - Fourier number. 

SUBSCRIPTS 

i = 0,1 for coagulant; i = 2, 3 for solvent;  

i = 0,2 for R0> r>R; 

 i = 1,3 for 0< r< R:  

 j = for R0 > r > R ;  

j = 1 for 0<r <R; 

n - initial value of a quantity;  

s - value of a quantity at fiber surface, in coagulating bath; 

     k - k-th time interval in numerical solution;  

    cr - value of a quantity at a phase transition;  

     g - quantities pertaining to the polymer gel;  

     l - quantity derived from solving a linear problem;  

     p - approximate solution of a linear diffusion problem. 
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